Reverse Engineering & Malware Analysis -
Intermediate Level

Dynamic analysis:

. Start procmon, then pause and clear

. Start Fakenet

. Start Regshot, then take 1st shot

. Once 1st shot completes, Resume procmon

. Run Malware for about 1 — 3 mins and study fakenet output

. After about 3 mins pause procmon

. Use Regshot, to take 2nd shot

. Once 2nd shot completes, click Compare->Compare and show output
. Study Regshot output

©O© 00N OB WN -

e In procmon apply these filters:
e ProcessName is: malware-name
e Operation is:

o WriteFile
SetDispositionIinformationFile
RegSetValue
ProcessCreate
TCP
UDP

o O O O O

Procmon: Options -> Select Columns -> Select Thread 1D !l

Process Management

[User Mame B Proces:z ID
[] Session ID B Thread ID
[] Authentication ID [] Parent PID

[|Integrity [Virtualized

Types of malware

Dropper/Downloader
Keylogger/Info-Stealer
(Spam) Bot

Banker

Worm

Ransomware

Miner

Backdoor

Dropper / Downloader

Droppers:
o Uses embedded scripts to extracts embedded executable from itself and
executes it
o Typically spreads through malspam using Office Word or Excel documents
Downloaders:
o Same as droppers, except second stage is downloaded remotely from a
C2 (Command and Control) Server

Info-Stealers & Keyloggers

Logs keystrokes

Data exfiltration by emailing logs, ftp

Data may be stored locally

Communication may be encrypted

Maybe able to steal browser or application password, eg Chrome, Firefox, IMVU,
Outlook, FileZilla

API used in Keyloggers: GetAsyncKeyState(), SetWindowsHookEX(),
GetForegroundWindow()

Features used in Stealers: SQLite3 for Chrome, Firefox DLL, CryptUnprotectData()

(Spam) Bot

An infected machine becomes part of a botnet The botnet is controlled by the
botmaster(s)

May be used in mining cryptocurrencies, or in DDoS attacks, or sending malicious
spam

Eg: Mirai, Satori, Cutwail, ZeroAccess

Botmaster

Cc2 Cc2
Servers Servers

Infected Infected Infected Infected
Machines Machines Machines Machines

Banker

Very common, alongside info-stealers

Steals banking information

Web Injection, APl Hooking

Eg: Zeus, Danabot, Ramnit

API Hooking:

Intercepts API and redirects to its fake API in order to steal information, eg hooking of
HTTPSendRequest()

Worm

Self-propagates across the network

No interaction required

Exploits vulnerabilities in operating systems (eg, EternalBlue)

Contains malicious payload

Eg, WannaCry (EternalBlue and DoublePulsar Exploit), contains ransomware
payload

Ransomware

Encrypts files and displays message to ask payment in order to release files
Uses Bitcoin as payment

Eg: WannaCry

Gaining popularity because of crypto-currency

Attacks becoming larger involving hundreds of thousands of machines becoming
encrypted

Miners

aka Crypto Miners

Created from open source crypto-currency mining software

Uses victim machines to mine for crypto-currency & sends them to attacker’s
wallet

Spreads through botnets or malspam

Backdoor (RAT)

RAT = Remote Access Tool/Trojans

Gives attacker hidden remote access to the system

May include info-stealing and keylogging functionality

Could be reverse TCP connection

Sophisticated backdoors utilise modular framework, eg, Remcos

Malware Analysis Terminology

Packed
Obfuscated
Disassemblers
Debuggers
I0Cs

Packed / Packer

A packed malware contains part of itself compressed or encrypted

Compressed

Stub
exe

The Stub would unpack this compressed part and then execute it either by injecting it
into another process memory or running it by itself as a separate process.

Obfuscation

Using meaningless strings for variables

Encodes strings in base64

Break ups strings into multiple parts and uses some operations to concatenate them
Used in powershell or javascript

Malware also can be obfuscated, or, encrypted

Disassemblers

For analysing a file without executing it
Known as static analysis

Eg: Ghidra, IDA Pro

Ghidra is also a Decompiler

Cannot analyse memory regions

Debuggers

Allows you to execute a program and step through it
Examine memory regions

Known as Dynamic Analysis

Eg. xdbg, win dbg

Can unpack a packed malware by dumping memory
Behaviour Analysis

IOCs

e Indicators of Compromise

e Eg:

File Hashes

File Names

Email Address

URLs

Dropped Files

Added or Modified Registry Keys

o O O O O O

Malware Artefacts

e Items left over from malware infection
e Includes Indicators of Compromise (I0OCs)

Lab: Analysis of .NET Trojan Spyware (info-stealers)

https://github.com/dnSpy/dnSpy/releases

PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\labl-dotnet-trojan\.NET_Malware.bin

TrID/32 - File Identifier v2.2u4 - (C) 2003-16 By M.Pontello
Definitions found: 15648
Analyzing. ..

Collecting data from file: C:\Users\Freds\Documents\labl-dotnet-trojan\.NET_Malware.bin

69.7% (.EXE) Generic CIL Executable (.NET, Mono, etc.) (73123/4/13)
16.0% (.EXE) Winéd Executable (generic) (18523/12/u)

.2% (.DLL) Win32 Dynamic Link Library (generic) (6578/25/2)

.2% (.EXE) Win32 Executable (generic) (u4585/5/1)

.9% (.EXE) Winl6/32 Executable Delphi generic (2072/23)
PS C:\Tools\trid=

":, 53 security vendors and no sandboxes flagged this file as malicious

a850de0705c0f8095910aa1d5ed0e73a49581aa742Ticfaf2ff5144e93b04 71
ziraat_limpi.exe

E peexe assembly runiime-modules defeci-debug-environment spreader direci-cpu-clock-access

X Community Score v

Create a second file with a differen file extension: .exe
[NET_Malware.bin

EW] malware.exe

PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\labl-dotnet-trojan\malware.exe

TrID/32 - File Identifier v2.24 - (C) 2063-16 By M.Pontello
Definitions found: 15648
Analyzing...

Collecting data from file: C:\Users\Freds\Documents\labl-dotnet—trojan\malware.exe
69.7% (.EXE) Generic CIL Executable (.NET, Mono, etc.) (73123/u/13)
10.8% (.EXE) Win6l4 Executable (generic) (18523/12/u)
.2% (.DLL) win32 Dynamic Link Library (generic) (6578/25/2)
.2% (.EXE) Win32 Executable (generic) (4585/5/1)
.9% (

.EXE) Winl6/32 Executable Delphi generic (2072/23)

With DIE we can clearly see it is partially packed - but again there is a very high entropy -
meaning this malware is possibly encrypted.

https://github.com/dnSpy/dnSpy/releases

Detect It Easy v3.02 Entropy = a *

Offset
reds/Documents/lab1-dotnet-trojan/malware. exe J 88259 00000000

Entry point

A 00477dde Disasm g
MName Offset Size opy S
PE Import N
et 00000000 0001000 090 nat packed

Se TimeD Se [text’ 00001000 0DOTE000 95727 packed
156 Secti § 00077000 00001000 1.06010 not packed

Section(2)[".reloc’] 00078000 00001000 0.01676 not packed

Endianness

t It Easy(DE) LE

library NET(+2.0.50727)[-]

compiler VBN
linker Microsoft Linker(8.0)[GUI32]

When we look further into this malware with pestudio - we clearly see something is not
correct again. We can already link this to the virustotal result as the OriginalFilename is
the same:

Comments MiniToo! Power Data Recovery - Bootable Media Builder Setup
CompanyMame MiniTool Solution Ltd,

FileDescription MiniToo! Power Data Recovery - Bootable Media Builder
FileVersion 4.1.1.0

InternalMame ziraat_limpi.exe

LegalCopyright

OriginalFilename ziraat_limpi.exe
ProductVersion 4.1.1.0
Assemnbly Version 0.0.0.0

We do see a significant amount of imports which could mean this .exe is actually going to do
something as well as the flags:

library (3) duplicate (0] flag (0) bound (0) first-thunk-original (INT) first-thunk (IAT) type (13) imports (738)
mscoree.dll 729
user32 pfinvoke 5
user32.dll pfinvoke 4
imports (286) namespace (27} flag (13} group (10) technique (7} type (13)
GetForegroundWindow P/Invoke
GetWindowText P/Invoke
SuppressUnmanagedCodeSe,.,

WebClient

GetKeyboardState P/Invoke
MapVirtualkey P/Invoke
UnhookWindowsHookEx P/Invoke
GetWindowThreadProcessld P/Invoke

RijndaelManaged
Rfc2858DeriveBytes
SymmetricAlgorithm

ICryptoTransform
Send

oM oM oM oM oM o H X M M xX M X%

indicator (26) detail level

AB30DE

OF6095910AATDIEDDETIAA9581 AATA2TFCFAFZFFS144E93E. .

strings = URL http:/iziraat-helpdesk com/componentsicom_contentlimpopapalWin... 1
imports > flag 1
MET = namespace > flag 1
MET = namespace > flag 1
MET = namespace > flag 1
resources > file-ratio i 2
libraries » pfinvoke userdd, userd2.dil 2
imports » pfinvoke 9 2
file » signature Microsoft NET 3
file » name(s) = internal ziraat limpi.exe 3

3

file = hash

We also found a string -> URL, which is used by this malware.
For dynamic analysis we use regshot, Process Hacker, ProcMon and Fakenet!

Two rather suspicious keys have been added:

HKLMY\SOFTWARE\WOWEA32Node\Microsoft\Tracingmalware RASAPI3Z2
HKLMYSOFTWARE\WOWEA32Node\Microsoft\Tracing\malware RASMANCS

The malware itself creates suspicious files: mails.txt and browsers.txt. This could indicate
the malware is actively tracking our mailbox / browser!

—) ‘C\ProgramData\hails_txt

=
| HKCU\Software\MicrosofttWindows\CurrentVersion\internet Settings\5.0\Cache\Content\CachePrefix
——

=

HKCU\Software\MicrosoftiWindows\CurrentVersion\internet Settings\5.0\Cache\Cookies\CachePrefix

— 7:7:’| C:\ProgramData\Browsers. txt 1

We also clearly see a few warning in our network logging:

A& Brim Log Detail = [m]
File Edit Query View Window Help

Log details for pool: packets_20230214_204107.pcap B

FIELDS RELATED ALERTS

ts 2023-02-14T19:41:09.529

event_type alert Count

sre_ip 10.0.2.15 First ts Mot available
src_port 49724 Last ts Mot

dest_ip 192.0.2.123 Duration Mot

dest_port 80 Populated by community_id
vian 2

oroto - RELATED CONMECTIONS

app_proto hitp

alert » severity

Coun
alert » signature ET INFO Win
First ts
alert » category Generic Prot S
ast ts
alert » action allowed s
Duration =cond

alert » signature_id 2022913

We can clearly see something is sending text/html file(s) towards a certain destination:

FIELDS CORRELATION
_path files
s 2023-02-14T15%:41:09,341
fuid FI7GI52Mzas)OTrObf files
tx_hosts [192.0.2.123]
Duration 0.265 seconds
rx_hosts [10.0.2.15]
Papuloted by uid & communify_id
conn_uids [CkMCErdpb3KKyz2LRa]
source HTTF MD5 CORRELATION
depth 0 md5 count
analyzers [MD5,5HAT] 23b45d566db7349b8bbd1191511201e9 B
mime_type text/htm
mime_type count
filena = ;
=nems text/html B
duration ds
. . tx_hosts count
local_orig &=
|[10.0.2.15]] 3
is_orig false
[[192.0.2.123]
seen_bytes 1,446 | =

As well as display a clear sign of invalid certs (HTTP Proxy)

FIELDS CORRELATION

_path notice

] 2023-02-14T1%:41:08.983 m

uid CxMjiZ3ypSETUFUKDE m

d s orig_h 1002.15 [notice |
id » orig_p 49719 .
Duration 0.108 seconds
id » resp_h 10.0.2.15 : = —
Populated by uid & communify_id
id» resp_p 443
fuid FiwkDw2QOkdpy45L08
file_mime_type &
file_desc &
proto tcp
note SSLzimealid_Server_Cert

msg 551 certificate validation failed with (self signed certifi...

sub CM=localhost
SIC 10.0.2.15
dst 10.0.2.15
p 443

Here we clearly notice something is sending files, and using a HTTPproxy in the
background.

At this stage we can still do further static analysis with a tool called DnSpy - in which we
can observe more features of this malware. We know this is a .NET application - thus dnSpy
can help us in debugging this type of file (see previous screenshot in the beginning).

A fake description and company reveals itself:

ziraat_limpi (0.0.0.0) X

4
b
4
b
4
4
b
4
b
4

[8
w O o By Oy Oy O By By By Oy By By

GonnyCam is the main class in this application - which we can see at the top of the previous
screenshot. Double click here to go to the Entry Point. Here we clearly see that this malware
is indeed checking our mails and our browsers.

Another loC is the link provided in the file. This is clearly malicious:

Here we see this malware is effectively a keylogger - tracking Window Title, Machine Time
and Keystrokes Typed.

The following functions makes it way too obvious - this is effectively the RecordKeys
function:

key
count

(count - 1), 1, loopObj, obj})

(obj));

(between2,

(obj, loopObj, obj});

Which sends out data, which we can find in the P_Link, in send.sendLog, which is
effectively the Command & Control server.

At this point we clearly have found numerous amounts of evidence this is a keylogger.

So essentially the mails.txt and browsers.txt files are your malicious files which are used
as log files to send towards a C2C server via a HTTP Proxy.

API Hooking, Process Hijacking and Dumping Memory
We start with x32dbg to debug this malware. Adjust the following:

io: Sethings

Events Engine Exceptions Disasm GLUT Misc

Break on:

[] System Breakpoint® [] Thread Entry

B Entry Ereakpoint® [] Thread Start

[Exit Breakpoint® [| Thread End

[] 1.5 callbacks® [] System TLS Callbacks™®
[] DLL Entry [] System DLL Entry

[] DLL Load [] System DLL Load

] DLL Unload [] System DLL Unload

[] Debug Strings

Uncheck system breakpoint and TLS callbacks. Now it will break at the entrypoint.

& cru | & Log |1 Notes #® Breakpoints Memory Map [}V call Stack =7 SEH L¢3 Script & Symbols <> Source +~' Refen
P ECX EDX ESI EDIgmmXY 35 push ebp ENtryPoint

o004 8BEC mov ebp,esp

o004 81EC D4000000 sub esp,D4

s c= sk =hy

We once again put a breakpoint at VirtualAlloc

ommand: Cormands are comma SSP2! -ommand: bp VirtualDrotect

Paused | Brealqjoirlt at 76093160 set! Paused | Erealq:loint at 7002 1B0 st

g, |. LHIUCLELLS daLe DUlUlE SEidal d el

Paused | Breakpoint at 76D985F0 set!

These breakpoints are used to track when the APl is going to unpack. Additionally check if a
debugger APl is present and a CreateToolhelp32Snaphot. The snapshot is used to
enumerate a list of running processes in memory. Last but not least put a breakpoint on
Process32First. This one is used to iterate through a list of running processes in
combination with the Snapshot BP. Process32Next is in conjunction with the First command
to iterate through the list of processes.

Command: bp IsDebuggerPresent

Paused | Breakpoint at 76D385F0 set!

CreateFileW and CreateFileA are additional parameters to keep track of which files are
written to our system. The malware checks if you have any kind of anti-analysis tools on your
system installed.

CreateProcessinternalW is used to keep track of when the malware is going to execute
code which is already unpacked. VirtualAlloc and VirtualProtect are used to unpack -
CreateProcess is used to use these unpacked files.

- = - - - - - - — : - - = e=w =

IPU | o Log | 1 Motes ® Breakpoints B8 Memory Map [V call Stack &7 SEH 13| Seript & Symbals < sou
Address | Module/Label /Exception State Disassembly

ware

76D981B0 | <kernel32.d11.Virtualalloc> Enabled |mov ed

B b

76D985F0 | <kernel32.d11.virtualProtects Enabled |mov edi,edi

76DODBED | <kernel32.d11. IsDebuggerPresent> Enabled |jmp dword ptr ds:[<&IsDebuggerPresent:>)
76D9E940 | <kernel32.d11.CreateFileA> Enabled |jmp dword ptr ds:[<&CreateFilea>]
76D9ESS0 | <kernel32.d11.CreateFilen- Enabled |jmp dword ptr ds:[<&CreaterFilew=]

76DA6870 | <kernel32.d11.CreateToolhelp32Snapsh Enabled |mov ed
7GDAECS0 | <kernel32.d11.CreateProcessInternaly Enabled |mov
76DEL1050 | <kernel32.d11.Process32First> Enabled |mow
7GDEL11F0 | <kernel32.d11.Process3ZNext> Enabled |mow

Now we run at it will hit the first breakpoint, which is VirtualProtect:

® Breakpoints ¥ Memory Map [}V Call Stack =7 SEH |52| Script %E| Symbols €2 Source ' Referen

BBFF mav edi ,edi VirtualProtect
55 push ebp
BBEC mov ebp,esp
5D pop ebp
v FF25 9014EQ76 jmp dword ptr ds:[<&virtualProtects>] IMP. &virtualProtect
cC int3
cC int3

The next run will stop at VirtualAlloc - allocating space in the memory to unpack code:

N E Y =l N R bl b =1 D R T L - [T T ¥ [N = oLy AR W] RN =l IS RS [V IF N F el

BBFF mov edi,edi Virtualalloc
LS push ebp
BBEC mov ebp,esp
D pop ebp
~ FF25 B814E076 jmp dword ptr ds:[=&virtualalloc=] JMP.&Virtualalloc
CcC ints

A couple of runs further it is unpacking the file via VirtualAlloc.

In the next step it should land at CreateFileW - but this does not seem to trigger properly in
my environment. I'm going to a manual approach in this case selecting the breakpoints
myself.

The first iteration is CreateFileW:

3 L s ey g SR T T LR et st e Y TR e e EE RS T)

C74424 04 18000000 mov dword ptr ssifesp+4],18
53

FGFBC340 BBFF mov edi,edi CreateFilew
TEFBC342 LS push ebp

13 BBEC mov ebp,esp
7 B3E4 F8 and esp,FFFFFFF8
7 83EC 1C sub esp,1C
7 BB4D 1C mov ecx,dword ptr ss:[ebp+1cC] ecx: EntryPoint
7 BBC1 MoV edx,ecx ecx: EntryPoint
7 25 B7T7F0O000 and eax,7FBT

push ebx

This will look into your WinPcap and Wireshark programs if they are installed or not. In our
case it is - thus you must remove them.

If this is done - CreateToolHelp32Snapshot will pop up:

CreateToolhelp3zsnapshot

S0 push eax

6D A
DA
G0 A
7 eDA
7eDA
7eDA
76D A
7 GDA 51 push ecx ecx: EntryPoint
7 6DA 51 push ecx ecx: EntryPoint
TEDA 83EC &C sub esp,&C
7EDA 53 push ebx
7 6D A 56 push esi esi:EntryPoint
7 GDA 57 push edi edi:EntryPoint
7 GDA Al 4001E376 mov eax,dword ptr ds:[76E30140]
7 6DA 3145 F3 xor dword ptr ssi|ebp-3],eax
TEDA 33C5 Xor eax,ebp
7EDA 50 push eax
7 GDA 8045 FO lea eax,dword pir ss:[Bebp-100
7 GDA G4: A3 00000000 mov dword ptr [0] ,eax
7 GDA 834D AC FF or dword ptr ss:|lebp-54),FFFFFFFF
i st LR

T T e il A o E

CreateToolHelp32Snapshot will check what is already running in memory - CreateFile is just
checking if the program is actually installed / present or not.

JLL Loaded: 7£D50000 C:\Windows\SysWOWe4)\imm32 _ 411
NT3 breakpoint "entry breakpoint" at <panda banker . EntryPoint> (00411£55)!

NT3 breakpoint at <kernel32 VirtualProtect> (7EDS25F0)!
NT3 breakpoint at <kernel3 VirtualZlloc> (T&
NT3 breakpoint at <kernel3? Virtual®lloc>
NT3 breakpoint at <kernel32 Virtual®lloc>
NT3 breakpoint at <kernel32 Virtual®lloc=
NT3 breakpoint at <kernel3 . VirtuallAllocx (TEDSS31B0)!

For me the malware stops after the next VirtualAlloc. After looking into the notes i also added
a breakpoint at CreateProcessW which could help - but doesn’t in my case. Somehow the
debugger stops and leaves the program be.

The idea is once you get past the file creating - the malware will start creating processes via
CreateProcesslinternalW (or CreateProcessW) and track these processes created.

Process Hacker can be used to track these processes created. Here you should be able to
see a new process sbchost.

API WriteProcessMemory can be used to hijack other processes. NtWriteVirtualMemory
is for the same reason applied. NtResumeThread is used to resume a specific process
because when it is created it is always in a suspended state. At this point you need this
API to start the API once more. CreateRemoteThreat is used to start another thread outside
of itself after it hijacked a process.

In combination with Process Hacker you can see the processes created.

Unpacking Emotet Trojan

https://www.malwarebytes.com/emotet

In this lab we will be using the tool IDAfree - which is another debugger that can be used to
analyse malware. Simply follow the steps and click OK:

g Load a new file E Functions

Load file C:\Users\Freds\Documents\emotet_trojan'\Emotet.bin as

Portable executable for 80386 (PE) [petd.dil]
Binary file 7] sub_417800

7] sub_417B20
F] sub_417C50

Function name

Processor type (double-dick to set) E sub 17080
Intel Pentium protected with MMX 280586p
Intel Pentium real with MMX 30586r 7] sub_417CD0
MetaPC (disassemble all opcodes) metapc E sub_417D50
F] sub_417DED
Analysis
Loading segment 0x0000000000000000 Kernel options 1 Kernel options 2 Kernel options E start
B Enabled

F] sub_417F30

Loading offset 0x0000000000000000 B Indicator enabled Processor options E b 417F90
sU
Options F] sub_413060
Loading options Create segments [:] Load resources E sub 418040
Fill segment gaps [:] Create FLAT group u Rename DLL entries -
Load as code segment @ Create imports segment) Manual load E sub_—‘ﬂ 8150

F] sub_4182B0

Cancel Help

The malware is quite short - and has few functions confirming this is possibly packed. You
can use DIE (detect it easy) to see if it is packed or not. Entropy is once more very high,
confirming our findings it is possibly packed.

Offset
00000000

Regions
MNarne Offset Size Entropy Status
PE Header 00000000 00000400 2.23745 not packed
Section(0)[" text'] 00000400 00017400 7.20283 packed

Section(1)['.rdata'] 00017800 00002800 5.85374 not packed

Section(2)['.data'] 00012000 00000200 471047 not packed
Section{3)[".rsrc'] 00012200 Q0000200 3.88502 not packed

A - o AN T

Now we need to find the VirtualAlloc process - in our lab we know which process it trigger.

https://www.malwarebytes.com/emotet

(= h=lES (i i
loc_417D9A:
3 Attributes: bp-based frame mov [ebp+var_18], eax
mov edx, [ebpt+var_l@]
sub_417D5@ proc near mov dword_41C1E8, edx
mov eax, dword 41C1A4
var_l4= dword ptr -14h mov dword_41C1A8, eax
var_18= dword ptr -18h mov dword_41C1B4, @
var_C= dword ptr -@Ch mov ecx, dword 41CLES
var_B= dword ptr -3 add ecx, 182F8h
var_4= dword ptr -4 mov dword_41C1B4, ecx
mov eax, [ebptvar_l1@]
push ebp | mov esp, ebp
mow ebp, esp pop ebp
sub esp, 14h retn
mov [ebprvar 4], 4oh ; "0’ | | S
mow [ebpt+var_C], @
mov eax, dword_41C1A4
mov [ebp+var_14], eax
mov [ebp+var_8], @FFFFFFFFh
mov ecx, ds:Virtualalloc
mov dword_41C218, ecx

push [ebp+var_4]
push 3e@ah

push [ebptvar_14]
push [ebp+var_C]

mow ecx, dword_41C218
push offset loc_417D9A
push ecx

retn

A normal epilogue has an EBP and a POP. Normally you don’t push something to the stack
before a return - not it is a push. This indicates this is an abnormal epilogue. This is a trick

used by malware to confuse an analyst. Now it will execute the push exc instead of a POP.
This will call VirtualAlloc and return to the push offset. This function can be viewed on the
right side - the red marked area is then actually what it will return in the end.

An abnormal jump can be noticed here as well:

mow edi, edi
jmp eCx
start endp

Now we have disassembled the malware - we can debug and analyse it further with x32dbg
debugger and place our break points.

Address |Module/Label /Exception State Disassembly

00417FL1F | emotet. bin Enabled |jmp ecx

We run and step over this breakpoint and end up here:

—_—— - L . g s e Ly e i s e e e
[EIF ECx o T 55 push ebp
. 8BEC mov ebp,esp
. ~ EB 00 jmp emotet.4l
I:)o Al FOC14100 mov eax,dword eax:
. 8B25 BCC14100 mov esp,dword
. Al FOC14100 mov eax,dword eax:
. 58 pop eax eax:
. BEES mov ebp,eax
. Al FOC14100 mov eax,dword eax:
. Al DSC14100 mov eax,dword eax:
.] push eax eax:
. Al BOC14100 mov eax,dword eax:
.] push eax eax:
. Al FOC14100 dw eax:
. BBD2
. BBD2
- oono

Here we see another anomaly pushing instead of popping. Put another breakpoint here:

S5B15
52
c3
5D
c3
cC

[E N XN N

B4C14100

mov edx,dword ptr ds: [41C1B4]
push edx

ret

pop ebp

ret
int3

Run - This is newly allocated memory from VirtualAlloc (MZ):

Now remove the breakpoint (F2) and step over it. Now it will return to the normal address

at the top (right value)..

Default (stdcall)

H O

*|a

[ST

[esp+4] 00400000 "MZ™
[esp+8] 7eD97BAY9 kernel32.7
[esp+C] O0O0O2FFDO0O

[esp+10] 7eD97B9D <kernel3:
[esp+14] 0019FFDC

o8 006102F0

00000000
00400000
76D 97BAD
00ZFFO00
76D97B20
D019FFDC

[77BCEB3B

Q0ZFFO00
OCE99634

LT T T N T

emotet. 00400000
return to kernel3z.7eD97BAS Trom 777

kernel32.76D97B90

return to ntdll.77BCEB3IER Trom 777

55

BBEC
B81EC
745
C745

8B45
83C0
8945
817D

8D 4D
51

83C4

BEA4S
8945
8B45
8245
896D

We find another call which we will go into (double click) - here we see yet again another ret -
it seems like the malware is going into a sort of loop. Put a breakpoint on this ret.

[E X N K N

80000000
F4 00000000
F4 00000000

~ EB 0%

Fa
01
F4
F4 DSDC3200

~ 73 12
6A 58
6A 00

28

EE LS BFEBFFFF

oc

-~ EB DC

push ebp

mov ebp,esp
sub esp, 30
mov dword ptr
mov dword ptr
jmp 610312
mov eax,dword
add eax,1
mov dword ptr
cmp dword ptr
jae 61032D
push 53

push 0

lea ecx,dword
push ecx

€dall soFBEO
add esp,C

jmp 610309
mov eax,dword
mov dword ptr
mov eax,dword
mov dword ptr
mov dword ptr

ssiflebp-Cl,0
ss:[lebp-C},0

ptr ssifebp-Cl}
ss:flebp-Cf),eax
ss:|flebp-Ccj},32DCD5

ptr ss:|[lebp-&5j]

ecx:"U
ptr ss:[lebp+4f)
551 p-8J,eax
ptr ss:[febp+s]
:[febp-74f), eax ebp-74
L

:Bebp-654, ebp

e Ly g
pop ebp

ret

int3

int3

int3

Once we do this - once more - run, remove BP and step over it

times we arrive in yet again another function:

. Once we do this a few

55

BBEC

B3EC 30
Ce45 D8 4C
Ce45 D9 6F
Ce45 DA 61
C&45 DE 64
Ce45 DC 4C
Ce45 DD &9
Ce45 DE &2
Ce45 DF 72
Ce45 EO 61
Ce45 E1 72
Ce45 E2 79
Ce45 E3 45
Ce45 E4 78
Ce45 ES 41
Ce45 E6& 0O
Ce45 EB 6B
Ce45 E9 65
Ce45 EA T2
Ce45 EB GE
Ce45 EC 65
Ce45 ED &C
Ce45 EE 33
Ce45 EF 32
Ce45 FO ZE
Ce45 F1 64
Ce45 F2 &C
Ce45 F3 6C
Ce45 F4 00

Lo I ol Y

push ebp

mov ebp,esp
sub esp,z0

mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr
mov byte ptr

==TW FAarran

LT T P P P P P P P P P PV T P P R P R R P R T I P
WWAW\m@\mwmWm@mwmbm@bmwmwm@mmmwmmmemmemem Wb e e em e

:[flebp-of , 6C
:Rebp-Clll, 0

i T B (e

[T

Jod

53]
Wl 1 ,

This is using stack strings - instead of pushing it is moving a variety of strings directly into
the stack using the MOV function. This is obfuscating the code - indirectly pushing code to

the stack. Since we know what it is doing we simply look for the RET and put a breakpoint
just before the RET (F2). Use F8 to step over it, and F7 to go into a function.

jmp GOF3EC
mov esp,ebp
pop ebp

ret

int3

int3

int3

int3

int3

Now we have arrived over here since we came from the call mentioned above:

LA g el S T T LT R LT T Al L

iy et Tt eren e

L TETTEIvI] ==

B3C4 04
E8 E3F3FFFF
8945 B4
BB4L F8
5945 AD
BB4D BC
894D AC

add esp,4
call &0OF730
mov dword ptr
mov 2ax,dword
mov dword ptr
mov 2cx,dword
mov dword ptr

s5:|[febp-7Cll, eax
ptr ss:[lebp-5]

s5: |[febp-60f, eax
ptr ss:febp-74[1
s5:|febp-54], ecx

[ebp-747:"MZ"

We look into the next call mentioned in the screenshot - this is doing exactly the same as
previous calls. We can use the minus key to return - step out of a call. Now we simply step
over a variety of functions with F8 and look into each call. Most of them seem to be doing the
same as the above calls. It is calling the same call a few times - skip these and look into
another call that is different. Step over all calls. Continue until you are at the last call since all
calls, despite different names, basically do the same.

AT L

00610307

006103DB
006103ED
006103E2

006103EE
006102F1
00610ZF4
006102F7
00610ZFA
00610ZFD
00610ZFE

E& AOFBFFFF
85C0O

75 04

33C0

EB 1A

837D AOD 00
74 09

BB45 BO
SB4D 328
8341 10
8B5S ASB
BBGs 28

5D

58

pus e
lea edx,dword
push edx

call sOFFS0
test eax,eax
jne 6103ES
XOor eax,eax
jmp 610402
cmp dword ptr
je 6103F7
mowv eax, dword
mow ek, dword
mov dword ptr
mov edx, dword
mov esp, dword
pop ebp

pop eax

ptr ss:|[febp-65]

ss:ffebp-soff,0

ptr ss:|febp-50j
ptr ss:lebp-s5]
ds: [ecx+10] ,eax
ptr ss:|febp-55]
ptr ss:lebp-c3]

CLAL FL

In this call we actually see interesting details - VirtualAlloc - and MZ / program cannot be run
in DOS mode. Remember we can recognise VirtualAlloc by its four parameters. Always
look into the parameters via Microsoft documentation!

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

The push 40 function indicates this is probably VirtualAlloc - this function create read, write
and execute permissions. Call is always a permission to execute smth. We can step into this
call to investigate it! F8 until the call.

D0&0DFFBE2
D060OFFE4
0060FFED
D0&0DFFBEC
0060FFED
D060FFBF
DO&0DFFC2
D0&0DFFCS
D060OFFCT

Now we can actually see it is VirtualAlloc! Step over it one more time.

6A 40
&8 00300000
8B45 FC

50

6A 00
5B4D 08
8B51 24

FFD2

8945 ES8

B LA T

push 40

push 2000
mov eax,dword
push eax

push 0

mov ecx,dword
mov edx, dword
Eall edx

mov dword otr

— g

gy s

ptr ss:|lebp-4]

ptr ss:|ebp+&j
ptr ds:[ecx+24]

s5:lebp-1380. eax

[ebp+87: "MZ™

I Hide FFU

edx=<kernel3z.virtualalloc>

EAX 02260000

EEX D0ZFFOO0

D060FFCS ECX 2E7C0000

EDX 02260000

BeDump1l @oump2z @ Dump3 @y REE DOD1IFEDC

= P i ESP 0019FEBE4

Now we have our newly allocated region (memory). Look into this EAX (right click it) and
follow in dump. We clearly see it is unpacking smth in memory:

W9 LUmp L

B2 uump £

B Lump 5

Fg Lump <

Fg Lump o5

TET Watn L

LA=] LOCaIS &

Address

Hex

ASCII

02260000
02260010
02260020
02260020
02260040
02260050
02260060
02260070
02260080
02260090
022600A0
022600B0
022600C0
02260000
022600E0D
022 RONOFD

oo
o0
00
00
oo
oo
oo
oo
oo
oo
oo
0o
00
00
0o
nly]

o0
o0
o0
o0
oo
oo
oo
oo
00
00
00
00
o0
o0
o0
iy

o0
o0
00
o0
oo
oo
oo
oo
o0
o0
o0
o0
00
00
00
iy

00
00
00
00
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
iy

00
00
00
00
oo
oo
oo
oo
0o
0o
0o
00
00
00
00
o

o0
o0
o0
o0
oo
oo
oo
oo
00
00
00
00
o0
o0
00
ey

o0
o0
o0
o0
oo
oo
oo
oo
o0
o0
o0
oo
o0
o0
o0
ey

00
00
00
00
oo
oo
oo
oo
0o
0o
0o
0o
00
00
00
aly]

00
00
o0
o0
o0
o0
o0
o0
00
00
00
00
o0
o0
00
iy

00
00
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
00
00
00
iy

00
00
00
00
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
iy

o0
o0
00
00
oo
oo
oo
oo
oo
oo
oo
0o
00
00
0o
nly]

o0
o0
o0
o0
oo
oo
oo
oo
00
00
00
00
o0
o0
o0
iy

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

Now we step over a few more functions and look into the add variable where we clearly see
the MZ value and DOS text which indicates it is copying into memory (EXE file):

»

s P e
ES E2FBFFFF €all &OFBCO
83C4 OC add esp,C
C745 F4 00000000 mov dword ptr ss:febp-CJ3,0

~ EB 0% jmp GOFFF3
SE4D F4 mov ecx,dword ptr ss:[[ebp-Cf]
83C1 01 add ecx,1
894D F4 mov dword ptr ssiebp-CJ,ecx
8B5S E4 mov edx,dword ptr ss:[[ebp-1C]
OFBF42 06 movzx eax,word ptr ds: [edx+&]
T04C Fd rmi rwnrd ntr cc-Bahn-rill saav

T ES?T$?19FEAE &"MZ"

C
DOG0FFDE
4% Dump 1 Poump2 B Dump3 B Dump4 B4 Dump 5 B watch1 b=l Locals # struct
Address | Hex ASCII
02260000 4D 5A 90 00|03 00 OO0 OO(O4 OO0 OO OO|FF FF OO0 OO | MZ. .00 n.ns V..
02260010 (B8 OO0 OO QOO0 OO0 OO0 OO(40 OO0 OO OO0|00 OO0 00 00| ..eeaea. [t ocoooco
02260020| 00 00 00 00|00 0D OO0 00|00 OO0 00 00|00 00 00 00| .. eeeeeeenen..
/| 02260020 |00 00 00 00|00 0D OO OO|00D DO OO OO(B8 00 00 00| ...cuseeenn. ...
02260040 |0E 1F BA OE|00 B4 09 CD |21 BB 01 4C|CD 21 54 &8 ..“..J.I!_.Lf!Th
02260050| 69 73 20 70|72 6F &7 72|61 66D 20 63|61 GE &E GF|1is program canno
02260060 |74 20 62 65|20 72 75 GE|20 69 GE 20|44 4F 53 20|t be run in DOS
02260070 |6D 6F 64 65 (ZE OD 0D DA |24 00 00 00|00 00 00 00| mode....%5.......
02260080 | AF DF 0D CE|EE BE 63 98|EEB BE 63 98|EE BE 63 98| E.E&%c.&%c.&uc,
02260090 (96 C7 86 98 |CF BE &3 98|96 CT7 BD 98 |EA BE &3 98 .@..IHC..QK.&HC.
022600A0|52 69 63 G5(EB BE &3 98|00 00 00 0O(0D 00 OO0 OD|RIChENC.,

After a lot of jumps we finally see a RET which indicates it is done copying everything into

memory.

|

EE
BaC
EE
BEE

7CFIFFFF
4 04
01000000
5

0800

..... e R TR

mov edx,dword ptr ss:[febp+z]
mov eax,dword ptr ds:[edx+18] ledx+187:"MZ"
push eax
call &OFE&D
add esp,4
mov eax,l
mov esp,ebp
pop ebp

EEE &

int3

int3

int3

int3

L]

Step over it again (F8) and continue to see what happens next. There is another return -
jump over this return as well and we arrive at push ebp. Now it should be finished
unpacking. Now we can dump this if we want to, for further investigation.

B cru | 4 Log

[Motes

® Breakpoints

B Memory Map) CallStack =9 SEH Jof soipt] symbols <2 Source o

EE
8BEC
B3E4 FB

81EC 74060000

ES FCEBFFFF
E8 EFFZFFFF
68 04010000
ED8424 7C040000

push ebp

mov ebp,esp

and esp,FFFFFFFS
sub esp,674

push ebx

push esi

push edi

call 40BSEBOD

call 40BCAD

push 104

lea eax,dword ptr ss:[fesp+47C]

We definitely need to keep track of the virtual address assigned to our dumped content -
which can be found in the screenshot below, in the first line (MZ): 02260000

ebp=0013FF84

00400240

@Woump1 @Wpoump2z @oump3 @oump4 @Wpumps @ watch1 Ix=lLoc

Address | Hex ASCIT

02260000 | 401 5A 20 00|03 0D OO0 OOD|0O4 00 OO0 OOD|FF FF OO0 OO0 MZ. .acnanann WWa
02260010| B8 00 OO OO|0OO OO OO OO(40 OO0 OO OQO|OO OO OO0 00| ...c... (- occoca
02260020 |00 00 OO0 OO|0O0 OO0 OO OO(00D OO0 00 OD|00 00 OD DD «.ueeeenancnanas
02260030 |00 00 OO0 QOO0 OD OO OO 00 OO0 OO0 OD|BB OO0 OO0 00| & .veeenanana cco
02260040 | 0E 1F BA OE|O0 B4 09 CD |21 BB 01 4C|CD 21 54 68 ..‘..'.I!‘.Lf!Th
02260050 (62 73 20 70|72 6F &7 72|61 6D 20 63|61l GE GE &F|1is program canno
02260060 |74 20 &2 65|20 72 75 GE|20 69 6E 20|44 4F 53 20|t be run in DOS
02260070| 6D &6F &4 &5 |2E 0D OD OA |24 00 OO0 OO|O00 OO OO OO ﬂﬂdg....$
02260080 | AF DF 0D CB|EB BE &3 98 |EB BE &3 9B |EB BE &3 98 E.Egﬁc.éﬁc.éﬁc.
02260090 | 96 C7 86 98 |CF BE &3 98|96 C7 BD 98B|EA BE &3 98 .@..IHC..QK.&HC.
022600A0|52 &2 &3 GB|EBE BE &3 98|00 00 00 00|00 00 OD OO|RichE8McC.........

Memory dumping

Since we now know it is finished unpacking - we can dump this into a file. Open Process
Hacker. We clearly see our malware being debugged.

|| die.exe 2436
v 5% x32dbg.exe 10372 021
Emotet.bin 10428
"8 ProcessHacker.exe 2896 0.28

Double click the malware file - and go to the memory tab. Now simply look for the virtual
address mentioned in the last chapter to find the unpacked content. The permission is RWX
- which should be correct. Double click and look into the contents for confirmation. It is the
correct memory location!

Oxe50000 Mapped: Com... 438kE R
Oxecallo Mapped: Res... 19,996 kB
0x 2260000 Private: Commit B0kE RWX
0x 2370000 Private: Commit 12kE RW Heap
0x 2373000 Private: Rese... 52 kB Heap
0x 2520000 Private: Commit 12ZkB RW Heap
0x2523000 Private: Rese... S52kB Heao
B " Emotetbin (10428) (0x2260000 - On2274000) — O it

00ooooao Ed Sa 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 MZ....oeunannnnn
00000010 & 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ..eewna. Bouwuunn. |
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seessansnsasnans
00000030 00 00 00 00 00 00 00 OO0 00 00 00 00 k& 00 00 00 .c.eesessnnaanans
00000040 O 1f ba Os 00 b4 0% cd 21 bBE 01l 4c cd 21 54 65 '..L.!Th
00000050 &5 73 20 70 72 ef €7 72 &1 &d 20 €3 &1 &= €e &f 1s program cannc
00000080 74 20 82 €5 20 72 75 62 20 €% g2 20 44 4f 53 20 £ be run in DOS
00000070 ed €€ €4 €5 2e 04 04 Oa 24 00 00 00 00 00 00 00 mode....fceewann

00000030 af df 0d cb &b be €3 98 &b be €3 58 eb be €3 38 [R
00000050 %96 c7 86 98 cf be 63 98 %6 c7 bd 598 ea be €3 38 Canannna C.
000000a0 52 69 63 68 eb be €3 95 00 00 00 00 00 00 00 00 Rich..Civeasnans

Annnnnkn nn An on o an o nn oan o an an Bn AS An nAn A~ 01 *Aa an TF T

At this point we should use a program called PE_bear which can be used to repair the
headers for this file. Since i do not have this program yet and cannot install it during malware
analysis (requires internet: risk at contaminating my own network + other computers in my
network).

Screenshots taken from Udemy are not allowed / able to do this - thus i can only describe
the process.

Four values will be given in the Section Hdrs. The raw address and virtual address should be
the same.

text: raw address .rdata - raw address .text = raw size (D000).
.rdata: raw address .data - raw address .rdata = raw size (1000)
.data: raw address .reloc - raw address .data = raw size (4000)
.reloc: ignore this value.

Now we need to calculate if the raw address is correct (programmer calculator).

HEX input - E3000 - 1000 = raw size. The end result should be the sameas the raw size.

Calculator

Programmer

EOOO -1000 =

D000

Once all the calculations and settings have been adjusted - we also need to adjust the
virtual size according to the raw size. So we basically do it the other way around.

At last we open the Optional Hdr and fix the base address. This is the base address
(Image Base) we used in the previous chapter (virtual address used by the dump).
0x3D0000 = address should be 3D0000, for example. Now save the executable and call it
emotet_unmapped.bin. Now we have an unmapped file which can be used to analyse this
further with IDA and have a much better understanding of the file and its executions (as well
as further static analysis).

Unpacking Hancitor Trojan

Technically speaking this is the same as the previous malware - thus i am not going to
repeat the steps here in order to complete this exercise. However we did install PE-Bear for
upcoming malware analysis parts.

https://hshrzd.wordpress.com/pe-bear/
https://cmake.org/download/
(hitps://www.qt.io/download-qt-installer)

(QT for sure is one of the more annoying types of software: need to create accounts,
provide loads of personal information,... Takes the longest time to provide.)

Once this is installed - proceed with Powershell and use the command cmake pe-bear. This
should download your pe-bear application.

You can also avoid these shenanigans and install one of the non-QT pe-bear installations.

Unpacking Vmprotect Trojan

First we look into the file in a general fashion - DIE. We know this is a Delphi trojan and
protected with Vmprotect.

() New ~ +h I, Tl sort - = View - ses
Detect It Easy v3.02 = O x

File name
C:/Users Freds/Documents fvmprotect_trojan/vmp. bin
File type Entry point Base address MIME

PES2 038d1202 = Disasm Memory map
Hash

PE Export Import lesources 5 Strings
Sections TimeDateStamp Size0fImage Resources

Entropy
oood > 2019-04-15 17:56:14 038d2000

Scan Endianness Mode Architecture
Signatures

1

Detect It Easy(DiE) LE 32 1386

protector VMProtect(-)[-]
linker Turbe Linker(2.25%, Delphi)[GUI32]

Shartcuts

Options

Signatures |:| Deep scan About

el

Exit

w# CD Drive (D) virt

https://hshrzd.wordpress.com/pe-bear/
https://cmake.org/download/
https://www.qt.io/download-qt-installer

Time for some more debugging - X32 to the rescue. Same breakpoints as usual:
VirtualAlloc, VirtualProtect and GetProcAddress. The last one is used when calling external

functions.
Address |Module/Label /Exception State Disassembly
764581B0 | <kernel32.d11.virtualAllocs Enabled |mov edi,edi
76458250 | <kernel32.d11.GetProcAddress> Enabled |mov edi,edi
7645 85F0 | <kernel32.d11.vVirtualProtects Enabled |mov edi,edi
Lets run:
ites #® Breakpoints ¥ Memory Map [} call stack =7 SEH l23| Seript %] Symbals £2 Source ' Referen
BEFF mov edi,edi virtualProtect
1 push ebp
BBEC mov ebp,esp
5D pop ebp
v FF25 290144C76 jmp dword ptr ds:[<&virtualProtect>] IMP. &virtualProtect
cc int3
cc int3

Lalad LRt]

F8 (jump) to the next steps and F9 (run) until we have a RWX .text file.

30300000 | 00100000 | Reserved (00200000) PRV -Rw--
30400000 | 00001000 [vmp. bin IMG -R.—--- ERWC -
10401000 | 0OEBG000 | . text” Executable code IMG ER--- ERWC -
31287000 | 00006000 ".itext™ IMG ER--- ERWC -
11280000 | 00030000 ".data” Initialized data IMG -RW-- ERWC -
AR R Tal Ve ta ta R Yo tol Bl g Yaly! " oo 1hmimit+ializad Aata TS Dl CD ™ _

After every ProtectVirtualMemory call the file becomes ERWC which means it is writing
something to this memory location. Once you jump over this it will change back to ER.

A

e (-
&6A FF push FFFFFFFF
FF15 9897B776 call dword ptr ds:[<&NtProtectVirtualMm
SBFO mov esi,eax
85F6 test esi,esi

~ OF88 09570500 j= kernelbase.76AEGFCD
33C0 XOr eax,eax

10280000 | 00173000 (Reserved (00200000) PRV -RW—-
400000 | 00001000 [vmp. bin IMG sSR=== ERWC —
0401000 | O0ESG000| . text” Executable code IMG ERMIC - ERWC -
11287000 | 00006000 “.itext” IMG ERWC— ERWC -
11280000 | 0003D000 | ".data” Initialized data IMG -RW-- ERWC -

At some point | will get land at GetProcAddress. It is now effectively dumping data in
memory. We need to investigate the second value and continue to run. This is effectively
how vmprotect works - with EncodePointer and DecodePointer APIs. We stop here:

Default (stdcall)

5 |2 [Unlocke

[esp+4] 00401000 wmp. 00401000
[esp+8] OOESSEE4 "ionItem=&"
[esp+C] 00000020
[esp+10] OO019FF4C
[esp+14] 00000206

[T

We simply run the code entire until it hits GetProcAddress again. The parameter now
indicates GetThreadPreferredUILanguages. We know it is done unpacking - but we need to
find an entry point. OEP - Original Entry Point is what we are looking for.

Default (stdcall) * 5 [& Junle

[esp+4] 76440000 "MZ"

[esp+8] 0040EL168 "GetThreadPreferreduILanguages™
esp+C] 01287032 wmp.01287032

esp+10] DO19FF34

esp+l4] 01287002 wvmp.012870D2

1
2: [
3: [
4: [
5: [

You keep stepping over until a return, debug -> execute till return until you hit the outermost
layer. Push ebp should mark this point - if you hit VirtualAlloc again return to the user code.

This is the trial-and-error part of malware analysis. If it doesn’t work out in one session -
rinse and repeat in a new session.

In the end we will do a dump and use this file to look for strings or IDA to analyse the code
further.

Unpacking Trickbot Trojan

Exception Filters:

One major difference here: also add Ignore Range (options -> settings menu). | 00000000-FFFFEFFEF

WriteProcessMemory: hijack an existing process in order to copy parts of its code into this
process memory. This way the malware can be stealthy.

Address |Module/Label /Exception State Disassembly
756981B0(<kernel3z2.dll1.virtualAlloc= Enabled |mov edi,edi
75690480 (<kernel32.d11.CreateProcessw: Enabled |mov edi,edi

TSEAECS0 | <kernel32.dll.CreateProcessInternaly Enabled |mow di , edi
7REB1A20 | <kernel32.d11.writeProcessMemory: Enabled |mov edi,edi

Follow in dump on the pop ebp variable. Right click and follow in Dump:

Show

EAX 001D0000
EEX 00000001
ECX BODDOOOO
EDX 00100000
EEF OO0GGFDCS :

ESP 00GSFDCS :

ESI OOBEZ9FS a"
EDI 00000036 '

"]
- AT T

At some point we know the malware is trying to stop Windows Defender:

(85 1NT3
CC int3
8BFF mov edi,edi TermsrvDeletevalue
55 push ebp
BEEC mov ebp,esp
56 push esi
SB35 0O80A7TZI7S mov esi,dword ptr ds:[7F5730A08]
B5F6 test esi,esi
~ OF85 6SDD0000 jne kernel32.756AB21C
23C0 XOr 2ax, 8ax eax:L"/c sCc stop wWinDefend”
SE pop esi
5D pop ebp
C2 0800 FEL &
CC int3

Delete windows defender:

- =1 L. s

®| 7563D4A0 8BFF mov edi,edi TermsrvDeletevalue

@ 75530442 55 push ebp

. BEBEC mov ebp,esp

- 56 push esi

L 8E35 0OBO0ATITS mov esi,dword ptr ds:[75730A08]

. B85F6& test esi,esi

- ~ OF85 G8DD0000 jne kernel32.756AB21C

L 33C0 Xor eax,eax eax:L"/c sc delete winDefend"
. SE pop esi

. BBFF mov edi,edi TermsrvDeletevalue

. 55 push ebp

. BBEC mov ebp,esp

. 56 push esi

. B8B35 0B0AFITS mov esi,dword ptr ds:[75730A08]

. 85F6 test esi,esi

- ~ OF85 &3DDO000D jne kernel32.756AB21C

. 33C0 Xor eax,eax eax:L"/c powershell set-MpPreference -DisableRealtimeMonitoring $true”
- e nnn aci

Now it has dropped a file the malware wants to execute:

Jefault (stdcall)

[esp+4] 00000000
[esp+8] 0066ADTO L"C:“\“Users'\Freds'‘\AppData'‘Roaming'ywnetwork'\Usjclbpt. exe™
[esp+C] 00000000
[esp+10] 00000000
[esp+14] 00000000

[T R

Go to Run and enter in %appdata% which will allocate the file:

Localllser » AppData » Roaming * wnetwork

[Mame Date modified

Usjclbpt.exe 05/03,/2019 02:45

Compare it with the original trickbot file:

Filename MD5

Usjclbpt.exe f0e3d9253382b367c06317a341054aa1
D Trickbot.bin ~ f0e3d9253382b367c06317a341054aa1

It is exactly the same file! This makes malware more stealthy. You should now start from
this location (and analyse it further). Stop the original analysis and continue with the other
location.

We add all the same BPs + 1 more: NtWriteVirtualMemory - this is similar to the previous
ones (process memory) but on a lower level to make sure we don’'t miss anything.

Address |Module/Label /Exception State Disassembly

756981B0 | <kernel32.d11.vVirtualAlloc= Enabled |mow
75690480 <kernel32.d11.CreateProcessis Enabled |mow
FLEAECEO | <kernel32.d11.CreateProcessInternaly Enabled |mow
756B1A20 | <kernel32.d11.writeProcessMemory: Enabled |mov

We notice this file behaving in exactly the same way as the original file. It hits VirtualAlloc a
few times until eventually you arrive at CreateProcessW. Now it will, once more, disable
windows defender, remove it and disable real-time monitoring. Normally it should create the
stealthy file at this point... at this point it will not create a file but directly go back to
VirtualAlloc.

Now we actually see it is dumping an executable:

YOO 00| L aennnn. [T
I o T o T
YOO OO .eeennnnnns p...
L 54 68[..2.. It .LI!Th
I 20 50(1is is a 64-bit P
L\ 24 DD|E executable..$.

)y oo 00| PE..d....2F. ... ddress | He

i N . 2FCO000 | Of
YOO OO . 5...... Oof...... ZECO0L0 | BE
L L 1 ZFCO0Z20 | OC
L ZFECO030 | OC
YOO OO weeereenanannens ZFCO040 | OF
L PECMAACA] B

The next VirtualAlloc will provide a MZ and DOS program, as to speak:

ddress | Hex ASCII

2FEQOOO (4D 5A 90 00|03 OO OD OO(O04 OO OD DO|FF FF 00 ODO(MZ. .. .cn.... V. .
ZFECOL10 | B8 00 OO OO(00 OO0 OO0 00|40 00 OO0 OO(00 OO0 00 O0) eceeeas B.irianns
2FEQOZ20 (00 00 OO0 00|00 OO0 0D OO(0D 00 OO0 OO|00D OO0 00 00| @ve e eananas PR
2FEQO30 (00 00 OO0 00|00 OO0 0D OO(0D 00 OD OO|CO OO0 00 00| @veeecananas Bet =
ZFEQO40(0E 1F BA OE|0D B4 09 CD|(21 BB 01 4C|CD 21 54 &8 ..“..'.I!_.LI!Th
2FEODS0| 69 73 20 70|72 €F €7 72|61 6D 20 &3 |61 GE &E &F|is program canno
ZFEQDE0D| 74 20 &2 65|20 72 75 GE|20 &9 GE 20|44 4F 532 20|t be run in DOS
ZFEQO70| 6D G&F 64 65 |2E OD OD 0A|24 00 OO0 OO|00 OO OO OO(mode....%.......

2FEDDS0O(BD 7D ES DE|F9 1C 86 8D|F9 1C 86 8D |F9 1C 86 8D |klepl...U...0U...
2FEQDS0(E2 81 18 B8D(F8 1C 86 8D|E2 81 29 SD|FB 1C 86 8D (4&...0...4.).0...

ZFEO0DAD|EZ 81 1B 8D |FS 1C 86 8D |52 6% 63 &8|F9 1C 86 SD|A4...@...Richil...
ZFEQOBO| OO OO0 OO OOI100 00 00 OO0I00 00 OO0 OOI0D OO0 00 OO0 ... eiinnnnnn

In theory you can now dump this memory into a file by right clicking the address -> follow
in memory map -> right click -> dump memory to file. At this stage we return to every single
over exercise in this chapter: use pe-bear to fix headers and analyse further with pestudio,
IDA.

We continue with a new VirtualAlloc -> this time it is just 1 with a couple of 0’s. If you right
click the value you cannot follow it in the dump since it has not been allocated yet. So
Run! The next run you will be able to follow in the dump on the same value. Since we are not
sure at this point if it is done unpacking we open Process Hacker and see if it has spawned
any additional processes. Not yet! But Trickbot is known to run additional code under a
new process called svchost and inject part of its code into this process.

W’ﬂﬂxgédhgmxe
[8] Usjclbpt.exe

Until we did this a few time it is dumping in the same area of memory. Until it starts
selecting a new memory area. Once you see this you know the entire code is unpacked.

Now it will write this unpacked code into a process svchost:

og [U mNotes ® Breakpoints ™ MemoryMap [)/ CallStack =@ SEH |oo| seript %] symbols <> Source /- References W Threads B Handes £7 Trace

mov edi,edi CreateProcessw Hide FPU

push ebp

§l§|§ EEE;ZS:tr ds: [«&CreateProcessw>) IMP.&CreateProcessw Egi Sgggaaéi e sstEER st e

1:@ Egi DD’:.MFG L:’C:\\v.'induws\\syste'nBZ"

int3 EBP "

int B s Y

g

We can safely dump this data now and now it will start a process v 3% x32dbg.exe
svchost and import this dumped file into this process. v [1] Usjclbpt.exe

After a few seconds / minutes you can close x32db sincere are going

to look further into the dumped files. But the svchost process will still appear later on. At the
bottom of Process Hacker you will notice a lonely svchost process running - this is trickbot!
You can even go into the memory tab and look into its contents - and see it is exactly the
same data as we have reviewed. Simply terminate it...

General Statistics Performance Threads Tokem Modules MEMOry Environment Handles GPU Disk and Me

B Hide free regions

Base address Type Size Protect... Use
 0x10000000 Private 128kB RWX
0x 10000000 Private: Commit 4kB R
B | svchost.exe (2960) (0x 10000000 - Ox10001000) — O ot

00o0aaoaoo !d Sa 80 00 01 00 00 00 04 00 00 00 ££ ££ 00 00 MZ. ... eunannnnn
00000010 L& 00 00 00 00 00 00 OO0 40 00 00 00 00 00 00 00 ..eweua. -
00000020 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 .eeeeensnnannnas
00000030 00 00 00 00 00 00 00 00 00 00 00 00 70 00 00 00 seseesnanana s T
00000040 O 1f ba Os 00 b4 09 cd 21 b3 0Ll 4c cd 21 54 €88 ..unanas !..L.!Th
00000050 &% 73 20 €% 73 20 €1 20 36 34 24 &2 6% 74 20 50 is is a dd4-bitc F
00000080 45 20 65 73 &5 €3 75 T4 &1 €2 6c 65 0d Oz 24 00 E executable..?.
00000070 50 45 00 00 &4 56 04 00 08 32 74 5c 00 00 00 OO0 PE..d....2}%....
00000080 00 00 00 00 £0 00 22 00 0k 02 0O 00 00 94 01 OO0 M asaanaa
00000050 00 24 00 00 00 00 00 OO0 30 5k 00 00 00 10 00 00 .5...... Oleweua.
0000000 00 00 00 10 00 00 00 OO0 00 10 00 00 00 02 00 00 eeeenesnnannnas

We will now analyse the dumped file further. Since we have pe-bear now we can actually
proceed with the steps!

Disasm: text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs W Exception
+

Mame Raw Addr. Raw size Virtual Addr. Virtual Size Characteristics Ptrto Reloc. Mum. of Reloc. Mum. of Linenum.

> text 268 2BBA 1000 2B2A 60000020 0 0]
» .rdata 2DF2 444 4000 444 40000040 0 0 0
» .data 0 0 5000 78 COO00040 0 0]
> .pdata 3236 1F8 6000 1F2 40000040 0 0 0

First step is to change the raw address and calculate the raw size:

Disasrm: .text General DOSs Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs
+ o]

Mame Raw Addr. Rawsize Virtual Addr. Virtual 5ize Characteristics Ptrto Reloc. Mum. of

» text 1000 3000 1000 3000 E0000020 0 0
» .rdata 4000 1000 4000 1000 40000040 0 0
» .data 5000 1000 5000 1000 COD00040 0 0
» .pdata 6000 1F8 &000 1F3 40000040 0 0

Also check the Image Base - if this is the same as the dumped file value:

FO Image Base 10000000
Fa Section Alignment 1000

It is! So no changes required!

[Mame Date modified
[Trickbot.bin 05/03/2019 02:45
D trickbot_dump.bin 19/02/2023 17:51
D trickbot_exe_dump.bin 19/02/2023 18:M
D trickbot_unmapped.bin 19/02/2023 18:12

Now we can further analyse this file with IDA or Pestudio, for example.

Further exercises and analysis

Since most of the exercises follow the exact same process (with some variations) - i'm not
going to further document them directly. Specific interesting details will be documented here
- but not documented in full.

Unpacking Dridex Trojan

Similar to a previous malware analysis - we need to calculate the amount of times the
malware hits VirtualAlloc and VirtualProtect. We need this in order to know when we need
to dump. If you exceed these values - we will miss the export and the debugger will stop.
We need to restart a new analysis machine since we cannot use the current one anymore.

You can also view the amount of hits in the breakpoints section!

We can use Process Hacker in order to obtain the memory dump -> look into the memory
tab when analysing the malware! Pe-bear has to be run again to unmap the headers. You
take a look at the imports and know if your headers are correct -> if you see imports, you
know it is done!

Unpacking Ramnit Trojan

Ramnit is mostly used in the banking industry. It can be spread by clicking on an ad on an
insecure website - or by opening the file including this malware.

It is packed with AutolT - similar to one of the previously analysed malwares.

Ramnit is creating a variety of new processes (ramnitmgr.exe) which we have to attach to.
You need to use a second x32dbg to attach to this process. You now need to switch
between both the processes to see the data being represented in one another.

Once we have the UPX file located - we can dump a file and unpack the UPX with CFF
Explorer (UPX Utility tab). This can then be further analysed via pestudio.

Unpacking Remcos Trojan

Remote Control & Surveillance is a “legit” malware used by multiple threat actors used fully
control any Windows computer from XP onwards.

https://success.trendmicro.com/solution/1123281-remcos-malware-information
https://breakingsecurity.net/remcos/

http://a-twisted-world.blogspot.com/2008/03/createprocessinternal-function.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocess

memory

Remcos seems to be a legitimate PDF file but is essentially an executable file.
In the end you can use DNSpy to look into tracing the Invoke - it will act as an Agent on a
target system. “Remcos restarted by watchdog” process.

https://success.trendmicro.com/solution/1123281-remcos-malware-information
https://breakingsecurity.net/remcos/
http://a-twisted-world.blogspot.com/2008/03/createprocessinternal-function.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

Unpacking Zloader Trojan

It is a variant of the Zeus malware (trojan) and is used in a multitude of attacks. During
COVID-19 it is widely used to spread towards the banking sector. Since 2020 it is monitored
to be used at least in one campaign a day.

Itis included in invoices with Microsoft Word Files - once clicking on “enable content” button
the malware is essentially executed. It is a .dll file.

https://r rces.inf
nt-it-malware-spotlight/

https://resources.infosecinstitute.com/topic/zloader-what-it-is-how-it-works-and-how-to-prevent-it-malware-spotlight/
https://resources.infosecinstitute.com/topic/zloader-what-it-is-how-it-works-and-how-to-prevent-it-malware-spotlight/

