
Reverse Engineering & Malware Analysis -
Intermediate Level
Dynamic analysis:

1. Start procmon, then pause and clear
2. Start Fakenet
3. Start Regshot, then take 1st shot
4. Once 1st shot completes, Resume procmon
5. Run Malware for about 1 – 3 mins and study fakenet output
6. After about 3 mins pause procmon
7. Use Regshot, to take 2nd shot
8. Once 2nd shot completes, click Compare->Compare and show output
9. Study Regshot output

● In procmon apply these filters:
● ProcessName is: malware-name
● Operation is:

○ WriteFile
○ SetDispositionInformationFile
○ RegSetValue
○ ProcessCreate
○ TCP
○ UDP

Procmon: Options -> Select Columns -> Select Thread ID !!!

Types of malware
● Dropper/Downloader
● Keylogger/Info-Stealer
● (Spam) Bot
● Banker
● Worm
● Ransomware
● Miner
● Backdoor

Dropper / Downloader
● Droppers:

○ Uses embedded scripts to extracts embedded executable from itself and
executes it

○ Typically spreads through malspam using Office Word or Excel documents
● Downloaders:

○ Same as droppers, except second stage is downloaded remotely from a
C2 (Command and Control) Server

Info-Stealers & Keyloggers
● Logs keystrokes
● Data exfiltration by emailing logs, ftp
● Data may be stored locally
● Communication may be encrypted
● Maybe able to steal browser or application password, eg Chrome, Firefox, IMVU,

Outlook, FileZilla
● API used in Keyloggers: GetAsyncKeyState(), SetWindowsHookEx(),

GetForegroundWindow()
● Features used in Stealers: SQLite3 for Chrome, Firefox DLL, CryptUnprotectData()

(Spam) Bot
● An infected machine becomes part of a botnet The botnet is controlled by the

botmaster(s)
● May be used in mining cryptocurrencies, or in DDoS attacks, or sending malicious

spam
● Eg: Mirai, Satori, Cutwail, ZeroAccess

Banker
● Very common, alongside info-stealers
● Steals banking information
● Web Injection, API Hooking
● Eg: Zeus, Danabot, Ramnit
● API Hooking:
● Intercepts API and redirects to its fake API in order to steal information, eg hooking of

HTTPSendRequest()

Worm
● Self-propagates across the network
● No interaction required
● Exploits vulnerabilities in operating systems (eg, EternalBlue)
● Contains malicious payload
● Eg, WannaCry (EternalBlue and DoublePulsar Exploit), contains ransomware

payload

Ransomware
● Encrypts files and displays message to ask payment in order to release files
● Uses Bitcoin as payment
● Eg: WannaCry
● Gaining popularity because of crypto-currency
● Attacks becoming larger involving hundreds of thousands of machines becoming

encrypted

Miners
● aka Crypto Miners
● Created from open source crypto-currency mining software
● Uses victim machines to mine for crypto-currency & sends them to attacker’s

wallet
● Spreads through botnets or malspam

Backdoor (RAT)
● RAT = Remote Access Tool/Trojans
● Gives attacker hidden remote access to the system
● May include info-stealing and keylogging functionality
● Could be reverse TCP connection
● Sophisticated backdoors utilise modular framework, eg, Remcos

Malware Analysis Terminology
● Packed
● Obfuscated
● Disassemblers
● Debuggers
● IOCs

Packed / Packer
● A packed malware contains part of itself compressed or encrypted

● The Stub would unpack this compressed part and then execute it either by injecting it
into another process memory or running it by itself as a separate process.

Obfuscation
● Using meaningless strings for variables
● Encodes strings in base64
● Break ups strings into multiple parts and uses some operations to concatenate them
● Used in powershell or javascript
● Malware also can be obfuscated, or, encrypted

Disassemblers
● For analysing a file without executing it
● Known as static analysis
● Eg: Ghidra, IDA Pro
● Ghidra is also a Decompiler
● Cannot analyse memory regions

Debuggers
● Allows you to execute a program and step through it
● Examine memory regions
● Known as Dynamic Analysis
● Eg. xdbg, win dbg
● Can unpack a packed malware by dumping memory
● Behaviour Analysis

IOCs
● Indicators of Compromise
● Eg:

○ File Hashes
○ File Names
○ Email Address
○ URLs
○ Dropped Files
○ Added or Modified Registry Keys

Malware Artefacts
● Items left over from malware infection
● Includes Indicators of Compromise (IOCs)

Lab: Analysis of .NET Trojan Spyware (info-stealers)

https://github.com/dnSpy/dnSpy/releases

Create a second file with a differen file extension: .exe

With DIE we can clearly see it is partially packed - but again there is a very high entropy -
meaning this malware is possibly encrypted.

https://github.com/dnSpy/dnSpy/releases

When we look further into this malware with pestudio - we clearly see something is not
correct again. We can already link this to the virustotal result as the OriginalFilename is
the same:

We do see a significant amount of imports which could mean this .exe is actually going to do
something as well as the flags:

We also found a string -> URL, which is used by this malware.

For dynamic analysis we use regshot, Process Hacker, ProcMon and Fakenet!

Two rather suspicious keys have been added:

The malware itself creates suspicious files: mails.txt and browsers.txt. This could indicate
the malware is actively tracking our mailbox / browser!

We also clearly see a few warning in our network logging:

We can clearly see something is sending text/html file(s) towards a certain destination:

As well as display a clear sign of invalid certs (HTTP Proxy)

Here we clearly notice something is sending files, and using a HTTPproxy in the
background.

At this stage we can still do further static analysis with a tool called DnSpy - in which we
can observe more features of this malware. We know this is a .NET application - thus dnSpy
can help us in debugging this type of file (see previous screenshot in the beginning).

A fake description and company reveals itself:

GonnyCam is the main class in this application - which we can see at the top of the previous
screenshot. Double click here to go to the Entry Point. Here we clearly see that this malware
is indeed checking our mails and our browsers.

Another IoC is the link provided in the file. This is clearly malicious:

Here we see this malware is effectively a keylogger - tracking Window Title, Machine Time
and Keystrokes Typed.

The following functions makes it way too obvious - this is effectively the RecordKeys
function:

Which sends out data, which we can find in the P_Link, in send.sendLog, which is
effectively the Command & Control server.

At this point we clearly have found numerous amounts of evidence this is a keylogger.

So essentially the mails.txt and browsers.txt files are your malicious files which are used
as log files to send towards a C2C server via a HTTP Proxy.

API Hooking, Process Hijacking and Dumping Memory
We start with x32dbg to debug this malware. Adjust the following:

Uncheck system breakpoint and TLS callbacks. Now it will break at the entrypoint.

We once again put a breakpoint at VirtualAlloc

These breakpoints are used to track when the API is going to unpack. Additionally check if a
debugger API is present and a CreateToolhelp32Snaphot. The snapshot is used to
enumerate a list of running processes in memory. Last but not least put a breakpoint on
Process32First. This one is used to iterate through a list of running processes in
combination with the Snapshot BP. Process32Next is in conjunction with the First command
to iterate through the list of processes.

CreateFileW and CreateFileA are additional parameters to keep track of which files are
written to our system. The malware checks if you have any kind of anti-analysis tools on your
system installed.

CreateProcessInternalW is used to keep track of when the malware is going to execute
code which is already unpacked. VirtualAlloc and VirtualProtect are used to unpack -
CreateProcess is used to use these unpacked files.

Now we run at it will hit the first breakpoint, which is VirtualProtect:

The next run will stop at VirtualAlloc - allocating space in the memory to unpack code:

A couple of runs further it is unpacking the file via VirtualAlloc.

In the next step it should land at CreateFileW - but this does not seem to trigger properly in
my environment. I’m going to a manual approach in this case selecting the breakpoints
myself.

The first iteration is CreateFileW:

This will look into your WinPcap and Wireshark programs if they are installed or not. In our
case it is - thus you must remove them.

If this is done - CreateToolHelp32Snapshot will pop up:

CreateToolHelp32Snapshot will check what is already running in memory - CreateFile is just
checking if the program is actually installed / present or not.

For me the malware stops after the next VirtualAlloc. After looking into the notes i also added
a breakpoint at CreateProcessW which could help - but doesn’t in my case. Somehow the
debugger stops and leaves the program be.

The idea is once you get past the file creating - the malware will start creating processes via
CreateProcessInternalW (or CreateProcessW) and track these processes created.

Process Hacker can be used to track these processes created. Here you should be able to
see a new process sbchost.

API WriteProcessMemory can be used to hijack other processes. NtWriteVirtualMemory
is for the same reason applied. NtResumeThread is used to resume a specific process
because when it is created it is always in a suspended state. At this point you need this
API to start the API once more. CreateRemoteThreat is used to start another thread outside
of itself after it hijacked a process.

In combination with Process Hacker you can see the processes created.

Unpacking Emotet Trojan
https://www.malwarebytes.com/emotet

In this lab we will be using the tool IDAfree - which is another debugger that can be used to
analyse malware. Simply follow the steps and click OK:

The malware is quite short - and has few functions confirming this is possibly packed. You
can use DIE (detect it easy) to see if it is packed or not. Entropy is once more very high,
confirming our findings it is possibly packed.

Now we need to find the VirtualAlloc process - in our lab we know which process it trigger.

https://www.malwarebytes.com/emotet

A normal epilogue has an EBP and a POP. Normally you don’t push something to the stack
before a return - not it is a push. This indicates this is an abnormal epilogue. This is a trick
used by malware to confuse an analyst. Now it will execute the push exc instead of a POP.
This will call VirtualAlloc and return to the push offset. This function can be viewed on the
right side - the red marked area is then actually what it will return in the end.

An abnormal jump can be noticed here as well:

Now we have disassembled the malware - we can debug and analyse it further with x32dbg
debugger and place our break points.

We run and step over this breakpoint and end up here:

Here we see another anomaly pushing instead of popping. Put another breakpoint here:

Run - This is newly allocated memory from VirtualAlloc (MZ):

Now remove the breakpoint (F2) and step over it. Now it will return to the normal address
at the top (right value)..

Now we have arrived in the correct unpacked version of the malware.

We find another call which we will go into (double click) - here we see yet again another ret -
it seems like the malware is going into a sort of loop. Put a breakpoint on this ret.

Once we do this - once more - run, remove BP and step over it. Once we do this a few
times we arrive in yet again another function:

This is using stack strings - instead of pushing it is moving a variety of strings directly into
the stack using the MOV function. This is obfuscating the code - indirectly pushing code to
the stack. Since we know what it is doing we simply look for the RET and put a breakpoint
just before the RET (F2). Use F8 to step over it, and F7 to go into a function.

Now we have arrived over here since we came from the call mentioned above:

We look into the next call mentioned in the screenshot - this is doing exactly the same as
previous calls. We can use the minus key to return - step out of a call. Now we simply step
over a variety of functions with F8 and look into each call. Most of them seem to be doing the
same as the above calls. It is calling the same call a few times - skip these and look into
another call that is different. Step over all calls. Continue until you are at the last call since all
calls, despite different names, basically do the same.

In this call we actually see interesting details - VirtualAlloc - and MZ / program cannot be run
in DOS mode. Remember we can recognise VirtualAlloc by its four parameters. Always
look into the parameters via Microsoft documentation!

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

The push 40 function indicates this is probably VirtualAlloc - this function create read, write
and execute permissions. Call is always a permission to execute smth. We can step into this
call to investigate it! F8 until the call.

Now we can actually see it is VirtualAlloc! Step over it one more time.

Now we have our newly allocated region (memory). Look into this EAX (right click it) and
follow in dump. We clearly see it is unpacking smth in memory:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

Now we step over a few more functions and look into the add variable where we clearly see
the MZ value and DOS text which indicates it is copying into memory (EXE file):

After a lot of jumps we finally see a RET which indicates it is done copying everything into
memory.

Step over it again (F8) and continue to see what happens next. There is another return -
jump over this return as well and we arrive at push ebp. Now it should be finished
unpacking. Now we can dump this if we want to, for further investigation.

We definitely need to keep track of the virtual address assigned to our dumped content -
which can be found in the screenshot below, in the first line (MZ): 02260000

Memory dumping
Since we now know it is finished unpacking - we can dump this into a file. Open Process
Hacker. We clearly see our malware being debugged.

Double click the malware file - and go to the memory tab. Now simply look for the virtual
address mentioned in the last chapter to find the unpacked content. The permission is RWX
- which should be correct. Double click and look into the contents for confirmation. It is the
correct memory location!

At this point we should use a program called PE_bear which can be used to repair the
headers for this file. Since i do not have this program yet and cannot install it during malware
analysis (requires internet: risk at contaminating my own network + other computers in my
network).

Screenshots taken from Udemy are not allowed / able to do this - thus i can only describe
the process.

Four values will be given in the Section Hdrs. The raw address and virtual address should be
the same.

● .text: raw address .rdata - raw address .text = raw size (D000).
● .rdata: raw address .data - raw address .rdata = raw size (1000)
● .data: raw address .reloc - raw address .data = raw size (4000)
● .reloc: ignore this value.

Now we need to calculate if the raw address is correct (programmer calculator).

HEX input - E3000 - 1000 = raw size. The end result should be the sameas the raw size.

Once all the calculations and settings have been adjusted - we also need to adjust the
virtual size according to the raw size. So we basically do it the other way around.

At last we open the Optional Hdr and fix the base address. This is the base address
(Image Base) we used in the previous chapter (virtual address used by the dump).
0x3D0000 = address should be 3D0000, for example. Now save the executable and call it
emotet_unmapped.bin. Now we have an unmapped file which can be used to analyse this
further with IDA and have a much better understanding of the file and its executions (as well
as further static analysis).

Unpacking Hancitor Trojan
Technically speaking this is the same as the previous malware - thus i am not going to
repeat the steps here in order to complete this exercise. However we did install PE-Bear for
upcoming malware analysis parts.

https://hshrzd.wordpress.com/pe-bear/
https://cmake.org/download/
(https://www.qt.io/download-qt-installer)

(QT for sure is one of the more annoying types of software: need to create accounts,
provide loads of personal information,... Takes the longest time to provide.)

Once this is installed - proceed with Powershell and use the command cmake pe-bear. This
should download your pe-bear application.

You can also avoid these shenanigans and install one of the non-QT pe-bear installations.

Unpacking Vmprotect Trojan
First we look into the file in a general fashion - DIE. We know this is a Delphi trojan and
protected with Vmprotect.

https://hshrzd.wordpress.com/pe-bear/
https://cmake.org/download/
https://www.qt.io/download-qt-installer

Time for some more debugging - X32 to the rescue. Same breakpoints as usual:
VirtualAlloc, VirtualProtect and GetProcAddress. The last one is used when calling external
functions.

Lets run:

F8 (jump) to the next steps and F9 (run) until we have a RWX .text file.

After every ProtectVirtualMemory call the file becomes ERWC which means it is writing
something to this memory location. Once you jump over this it will change back to ER.

At some point I will get land at GetProcAddress. It is now effectively dumping data in
memory. We need to investigate the second value and continue to run. This is effectively
how vmprotect works - with EncodePointer and DecodePointer APIs. We stop here:

We simply run the code entire until it hits GetProcAddress again. The parameter now
indicates GetThreadPreferredUILanguages. We know it is done unpacking - but we need to
find an entry point. OEP - Original Entry Point is what we are looking for.

You keep stepping over until a return, debug -> execute till return until you hit the outermost
layer. Push ebp should mark this point - if you hit VirtualAlloc again return to the user code.

This is the trial-and-error part of malware analysis. If it doesn’t work out in one session -
rinse and repeat in a new session.

In the end we will do a dump and use this file to look for strings or IDA to analyse the code
further.

Unpacking Trickbot Trojan
One major difference here: also add Ignore Range (options -> settings menu).

WriteProcessMemory: hijack an existing process in order to copy parts of its code into this
process memory. This way the malware can be stealthy.

Follow in dump on the pop ebp variable. Right click and follow in Dump:

At some point we know the malware is trying to stop Windows Defender:

Delete windows defender:

Disable real-time monitoring:

Now it has dropped a file the malware wants to execute:

Go to Run and enter in %appdata% which will allocate the file:

Compare it with the original trickbot file:

It is exactly the same file! This makes malware more stealthy. You should now start from
this location (and analyse it further). Stop the original analysis and continue with the other
location.

We add all the same BPs + 1 more: NtWriteVirtualMemory - this is similar to the previous
ones (process memory) but on a lower level to make sure we don’t miss anything.

We notice this file behaving in exactly the same way as the original file. It hits VirtualAlloc a
few times until eventually you arrive at CreateProcessW. Now it will, once more, disable
windows defender, remove it and disable real-time monitoring. Normally it should create the
stealthy file at this point… at this point it will not create a file but directly go back to
VirtualAlloc.

Now we actually see it is dumping an executable:

The next VirtualAlloc will provide a MZ and DOS program, as to speak:

In theory you can now dump this memory into a file by right clicking the address -> follow
in memory map -> right click -> dump memory to file. At this stage we return to every single
over exercise in this chapter: use pe-bear to fix headers and analyse further with pestudio,
IDA.

We continue with a new VirtualAlloc -> this time it is just 1 with a couple of 0’s. If you right
click the value you cannot follow it in the dump since it has not been allocated yet. So
Run! The next run you will be able to follow in the dump on the same value. Since we are not
sure at this point if it is done unpacking we open Process Hacker and see if it has spawned
any additional processes. Not yet! But Trickbot is known to run additional code under a
new process called svchost and inject part of its code into this process.

Until we did this a few time it is dumping in the same area of memory. Until it starts
selecting a new memory area. Once you see this you know the entire code is unpacked.

Now it will write this unpacked code into a process svchost:

We can safely dump this data now and now it will start a process
svchost and import this dumped file into this process.

After a few seconds / minutes you can close x32db sincere are going
to look further into the dumped files. But the svchost process will still appear later on. At the
bottom of Process Hacker you will notice a lonely svchost process running - this is trickbot!
You can even go into the memory tab and look into its contents - and see it is exactly the
same data as we have reviewed. Simply terminate it…

We will now analyse the dumped file further. Since we have pe-bear now we can actually
proceed with the steps!

First step is to change the raw address and calculate the raw size:

Also check the Image Base - if this is the same as the dumped file value:

It is! So no changes required!

Now we can further analyse this file with IDA or Pestudio, for example.

Further exercises and analysis
Since most of the exercises follow the exact same process (with some variations) - i’m not
going to further document them directly. Specific interesting details will be documented here
- but not documented in full.

Unpacking Dridex Trojan
Similar to a previous malware analysis - we need to calculate the amount of times the
malware hits VirtualAlloc and VirtualProtect. We need this in order to know when we need
to dump. If you exceed these values - we will miss the export and the debugger will stop.
We need to restart a new analysis machine since we cannot use the current one anymore.

You can also view the amount of hits in the breakpoints section!

We can use Process Hacker in order to obtain the memory dump -> look into the memory
tab when analysing the malware! Pe-bear has to be run again to unmap the headers. You
take a look at the imports and know if your headers are correct -> if you see imports, you
know it is done!

Unpacking Ramnit Trojan
Ramnit is mostly used in the banking industry. It can be spread by clicking on an ad on an
insecure website - or by opening the file including this malware.

It is packed with AutoIT - similar to one of the previously analysed malwares.

Ramnit is creating a variety of new processes (ramnitmgr.exe) which we have to attach to.
You need to use a second x32dbg to attach to this process. You now need to switch
between both the processes to see the data being represented in one another.

Once we have the UPX file located - we can dump a file and unpack the UPX with CFF
Explorer (UPX Utility tab). This can then be further analysed via pestudio.

Unpacking Remcos Trojan
Remote Control & Surveillance is a “legit” malware used by multiple threat actors used fully
control any Windows computer from XP onwards.

https://success.trendmicro.com/solution/1123281-remcos-malware-information
https://breakingsecurity.net/remcos/

http://a-twisted-world.blogspot.com/2008/03/createprocessinternal-function.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocess
memory

Remcos seems to be a legitimate PDF file but is essentially an executable file.
In the end you can use DNSpy to look into tracing the Invoke - it will act as an Agent on a
target system. “Remcos restarted by watchdog” process.

https://success.trendmicro.com/solution/1123281-remcos-malware-information
https://breakingsecurity.net/remcos/
http://a-twisted-world.blogspot.com/2008/03/createprocessinternal-function.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

Unpacking Zloader Trojan
It is a variant of the Zeus malware (trojan) and is used in a multitude of attacks. During
COVID-19 it is widely used to spread towards the banking sector. Since 2020 it is monitored
to be used at least in one campaign a day.

It is included in invoices with Microsoft Word Files - once clicking on “enable content” button
the malware is essentially executed. It is a .dll file.

https://resources.infosecinstitute.com/topic/zloader-what-it-is-how-it-works-and-how-to-preve
nt-it-malware-spotlight/

https://resources.infosecinstitute.com/topic/zloader-what-it-is-how-it-works-and-how-to-prevent-it-malware-spotlight/
https://resources.infosecinstitute.com/topic/zloader-what-it-is-how-it-works-and-how-to-prevent-it-malware-spotlight/

